#### Universidad Austral de Chile - Valdivia 2015 Faculdad de Ciencias Forestales y Recursos Naturales

Use- and wood product-orientated investigations on *Abies grandis* from sustainable managed beech-mixed forest stands

F. Hapla, C. Hof and B. C. Kielmann





#### **Outline of presentation**

Project objectives
Investigation material
Part of investigation results
Solid wood products
Possible uses
Transfer services





# **Project objectives**

- Selection of the investigation material
- Heartwood discolouration and wetcore analysis
- Investigation of wood- and wood processing properties
- Investigation of the wood properties after modification due to thermal treatment
- Cooperation with industry partners and wood products
- Dissemination of the investigation results





#### Origin of the sample trees

#### A total of:

- 6 forest sites, 42 sample trees, 5 mixed stands and 1 pure forest stand,
- Tree age 40 64 years
- Municipal forest: Meschede, Höxter,
   Schmallenberg (North-Rhine-Westphalia)
- State forest: Forest district Grünenplan (Lower Saxony)





#### Heartwood discolouration and wetcore







## Wetcore analysis - Results

- Results of the cellular UV-spectroscopic analysis within the "heartwood"-area from 5 sample trees containing wetcore:
  - No transformation of the lignin structure of the cellwall layers
  - No mircobial degradation of the cell wall
  - Therewith no deterioration of the elastomachanical wood properties





#### **Results - Wood density**

- · Significant differences among the site-collectives
- · Sicnificant increase within the trees from pith to cambium
- Trend to decrease (lengthwise) longitudinal from the bottom to the top end of the trees; MC at 12 %

| Site          | n   | X<br>(g/cm³) | <b>S</b><br>(g/cm³) |
|---------------|-----|--------------|---------------------|
|               |     | (g/ciii )    | (g/ciii )           |
| Schmallenberg | 272 | 0,438        | 0,050               |
| Meschede      | 389 | 0,390        | 0,053               |
| Höxter        | 301 | 0,364        | 0,035               |
| Total         | 962 | 0,396        | 0,055               |





## Sawn timber drying

- Square timber dimensions
  - 40 mm \* 80 mm \* 2350 mm
  - 80 mm \* 160 mm \* 2350 mm

- Drying processes
  - Air seasoning
  - Convection drying
  - Hot steam drying





## Drying quality

- Air seasoning
  - Timber yard
  - Application of wellproven stacking methods
  - 1500 square timbers
  - Quick and steady drying (good results)
  - MC between12 % and 15 %







#### **Drying quality**

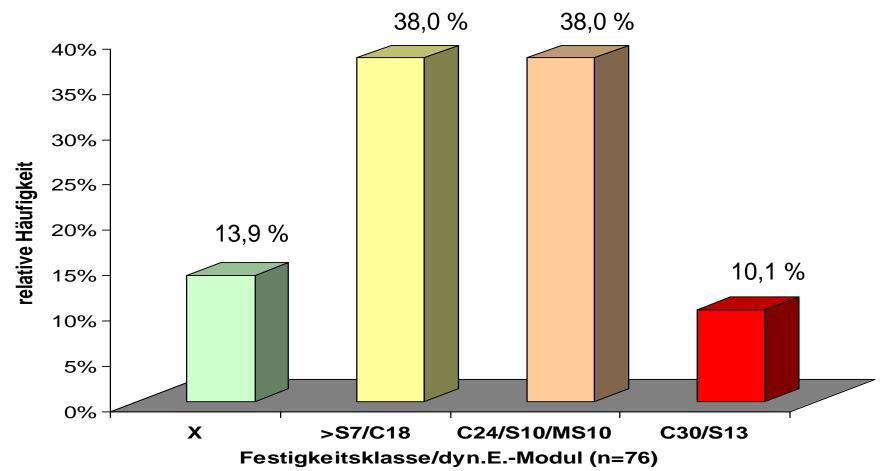
- Convection drying
  - Kiln temperature
    - > 50 °C
  - 8 different processes
  - 550 sqaure timbers
  - Final MC-average 10 %
  - Well and quick drying possible







# Stress-grading of sawn-timber


# Objectives:

- Testing MOE and strength properties of full size-timber
- Applicability of verification of the DIN 4074 standard
- Assessment of potential sawn-timber uses





# Stress-grading using "Timber-grader" according EN 338 (Schmallenberg 80 mm x 160 mm)



Stress-graded timber according EN 338 (n = 76)





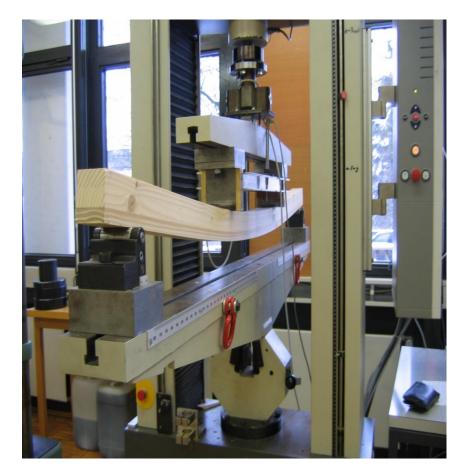
#### Sawn-timber grading

#### · Conclusions:

- Visual grading according DIN 4074 heavily underestimates the strength potential of the sawn-timber (95 % rejected, Site-Höxter)
- Stress-grading using MOE dyn. yielded 70 % in class S7 or higher
- Grading by machine can detect strength reserves
- The use of Grand-fir timber for constructive applications requires a machine based grading






## Gluing investigations

- Five glue-type systems based on phenolresorcinol, melamine-urea, ureaformaldehyde and polyurethane were tested
- Tests according DIN 68141 and DIN EN 302:
  - Tensile stress test perpendicular to the grain
  - Tensile shear strength test parallel to the grain (EN 204/205)
  - Delamination tests
- All tested glue-types can be used without restrictions for Abies grandis timber products





# 4 point-bending test according to EN 408 Glued-laminated timber (Site-Höxter)





Dimensions: 60 mm x 70 mm x 2350 mm





#### Thermal treatment

# Objectives:

- To distinguish the modification of wood product properties
- To assume the application area of thermally treated wood products
- The thermal treatment of wood products was carried out over 180°C using BICOSprocess





#### **Results - Thermo-Wood**

Dimensional stability:

Low water uptake

- ASE about 20 % - 60 % higher

Max. volume swelling at 7.5 %





#### **Results - Thermo-Wood**

Wood density and mechanical properties:

- Little decrease in oven-dry density
- Compressive strength parallel to the grain about 7 % higher
- MOE static slightly increased
- Bending strength about 8 % decreased





#### **Results - Thermo-Wood**

- Durability and weathering
  - Biolocical resistance comes up to durability class 1 – 2 (EN 113 and EN 350-1)
  - Thermo-Wood becomes greyish after QUV;
     Colour conservation by means of pigmented glaze coating possible (need for research)





## Thermo-Wood – Abies grandis





Dado and rabbet joint thermally treated

Terrace-floor panel thermally treated





# Thermo-Wood-Bench - Abies grandis



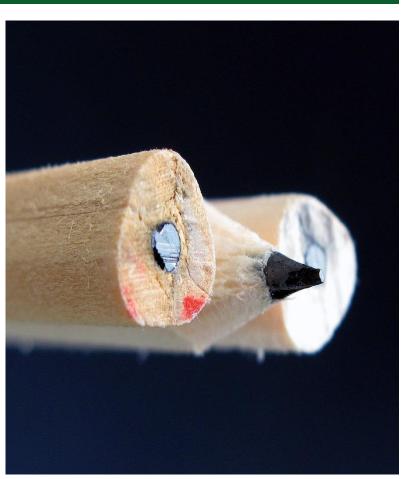




## Thermo-Wood-Facade - Abies grandis










# Pencil-Products - Abies grandis







Pencils and blanks





# Other wood products - Abies grandis



Door in Physics-Lab



Kitchen-cabinet door unit





## Other wood products - Abies grandis



Profiled baseboards









## Other wood products - Abies grandis



Sauna profile boards







#### Glued-laminated timber product - Abies grandis







#### Wood processing advantages - Abies grandis

- High yield of sawn-timber
- High grade of sawn-timber according EN 1611 (aesthetic point of view)
- Good results in air seasoning and convection drying (good dimensional stability)
- Sorption behaviour comparable or even favourable to spruce timber





#### Wood processing advantages - Abies grandis

- Mechanical properties come partly up to spruce-values (however specific silvicultural management of the mixedstands is necessary)
- · Good results in machining and glueing
- Ipregnation (moderate)





# Utilization options for the sawn-timber in interior woodwork

- Benefical assesement of the aesthetical aspects (light-coloured wood, ageless design)
- · Ceiling- and wall panelling
- Cabinet wood; furniture manifacture
- Solid-wood boards
- Sauna facilities (no resin canals)





#### Papers and proceedings

- Hof, C., Hapla, F. und Koch, G. (2008): Küstentanne häufig zu Unrecht unter Wert Verkauft Einfluss der Feuchteverteilung (Nasskernbildung) auf Verfärbungen im Kernholz der Küstentanne (*Abies grandis*) -.

  Holz-Zentralblatt, Nr. 29, S. 806-807
- Hapla, F. und Hof, C. (2008): Holzproduktorientierte Untersuchungen an Küstentanne. Berichte Freiburger Forstliche Forschung, Heft 76, S. 59, ISSN: 1436-1566, Herausgeber: Institut für Waldwachstum, Fakultät für Forstwissenschaften und Umweltwissenschaften, Universität Freiburg.
- Hof, C., Kielmann, B.C. und Hapla, F. (2008): Verwendungsorientierte Untersuchungen am Schnittholz der *Abies grandis*. holztechnologie, Nr. 6, S. 7-11
- Hapla, F., Hof, C. und Kielmann, B.C. (2008): Innovative Holzprodukte aus Küstentanne. Technologie-Informationen, S. 4, Technologietransfer aus Hochschulen Innovation Niedersachsen.





# Future Ecological Silviculture



Mixed-stands



Natural regeneration



